Mediation, Moderation, and Conditional Process Analysis I

Content
Statistical mediation and moderation analyses are among the most widely used data analysis techniques in social science, health, and business fields. Mediation analysis is used to test hypotheses about various intervening mechanisms by which causal effects operate. Moderation analysis is used to examine and explore questions about the contingencies or conditions of an effect, also called “interaction”. Increasingly, moderation and mediation are being integrated analytically in the form of what has become known as “conditional process analysis,” used when the goal is to understand the contingencies or conditions under which mechanisms operate. An understanding of the fundamentals of mediation and moderation analysis is in the job description of almost any empirical scholar. In this course, you will learn about the underlying principles and the practical applications of these methods using ordinary least squares (OLS) regression analysis and the PROCESS macro for SPSS, SAS and R invented by the course instructor.

Topics covered in this five-day course include:

As an introductory-level course, we focus primarily on research designs that are experimental or cross-sectional in nature with continuous outcomes.  We do not cover complex models involving dichotomous outcomes, latent variables, models with more than two repeated measures, nested data (i.e., multilevel models), or the use of structural equation modeling.

This course will be helpful for researchers in any field—including psychology, sociology, education, business, human development, political science, public health, communication—and others who want to learn how to apply the latest methods in moderation and mediation analysis using readily-available software packages such as SPSS, SAS and R.

Prerequisites (knowledge of topic)
Participants should have a basic working knowledge of the principles and practice of multiple regression and elementary statistical inference. No knowledge of matrix algebra is required or assumed, nor is matrix algebra ever used in the course.

Hardware and Software
Computer applications will focus on the use of OLS regression and the PROCESS macro for SPSS, SAS and R developed by the instructor that makes the analyses described in this class much easier than they otherwise would be.

Because this is a hands-on course, participants are strongly encouraged to bring their own laptops (Mac or Windows) with a recent version of SPSS Statistics (version 23 or later), SAS (release 9.2 or later), or R (version 3.6 or later) installed. (Only one statistical package is required, but participants can use more than one if desired) SPSS users should ensure their installed copy is patched to its latest release. SAS users should ensure that the IML product is part of the installation. PROCESS for R has not yet been publicly released. Participants in this course will receive an advance “beta” release of PROCESS for R before it is released to the public later in the year. You should have good familiarity with the basics of ordinary least squares regression, as well as the use of SPSS, SAS, or R. You are also encouraged to bring your own data to apply what you’ve learned.
STATA users can benefit from the course content, but PROCESS makes these analyses much easier and is not available for STATA.

Literature
This course is a companion to the second edition of the instructor’s book Introduction to Mediation, Moderation, and Conditional Process Analysis, published by The Guilford Press. The content of the course overlaps the book to some extent, but many of the examples are different, and this course includes some material not in the book. A copy of the book is not required to benefit from the course, but it could be helpful to reinforce understanding.

Examination
100% of assessment will be based on a written final examination at the end of the course. The exam will be a combination of multiple choice questions and short-answer/fill in the blank questions, along with some interpretation of computer output. Students will take the examination home on the last day of class and return it to the instructor within one week.
During the examination students will be allowed to use all course materials, such as PDFs of PowerPoint slides, student notes taken during class, and any other materials distributed or student-generated during class. Although the book mentioned in “Literature” is not a requirement of the course nor is it necessary to complete the exam, students may use the book if desired during the exam.

A computer is not required during the exam, though students may use a computer if desired, for example as a storage and display device for class notes provided to them during class.

Among the topics of the exam may include how to quantify and interpret path analysis models, calculate direct, indirect, and total effects, and determine whether evidence of a mediation effect exists in a data set based on computer output provided or other information. Also covered will be the testing moderation of an effect, interpreting evidence of interaction, and probing interactions.  Students will be asked to generate or interpret conditional indirect effects from computer output given to them and/or determine whether an indirect effect is moderated. Students may be asked to construct computer commands that will conduct certain analyses. All questions will come from the content listed in “Course Content” above.